
74 Web Applications with C#.ASP

4 Bus timetable

In the next project we will produce a timetable information system for the bus service between

Barmouth and Wrexham, which calls on route at the towns of Dolgellau, Bala and Llangollen.

We will set up a database to provide the timetables for three services in each direction along the

route:

Users will be asked to provide the starting point and destination for their journey, along with either:
 the earliest time at which they can depart, or
 the latest time by which they must arrive.

The computer will then check the database for the most suitable departure and arrival times, or give
a warning message if there is no scheduled journey meeting the user’s requirements.

We begin by creating a database. In Visual Studio, open the Server Explorer window by selecting the
Server Explorer option from the View menu. Right click Data Connections, and select Add
Connection. Create a new database file ‘BusTimetables’.

Wrexham Llangollen Bala Dolgellau Barmouth

0910 0940 1035 1120 1140

1310 1340 1435 1510 1540

1945 2015 2110 2145 2205

Barmouth Dolgellau Bala Llangollen Wrexham

0950 1020 1055 1150 1220

1230 1250 1325 1420 1450

1920 1940 2015 2110 2140

 Chapter 4: Bus timetable 75

Open the contents list for BusTimetables and right click Tables. Select Add New Table. We will

create a table to store times for journeys from Barmouth to Wrexham. Set up the fields shown:

Close the table by clicking the cross at the top right of the tab. When prompted, give the table the

name ‘BarmouthWrexham’.

Right click the BarmouthWrexham table icon and select ‘Show Table Data’. Add the three journey

timetables:

In a similar way, set up a table for journeys in the other direction from Wrexham to Barmouth. Give

this table the name ‘WrexhamBarmouth’.

Add the three journey timetables:

76 Web Applications with C#.ASP

Return to the Visual Studio start page by selecting the ‘Start page’ tab, and click the New Project

option. Select Visual C# / Web, and click ‘ASP.NET Empty Web Application’. Give the name

‘busTimetable’.

Go to the Solution Explorer window. Right click the busTimetable project icon, then select Add /

New Item. Click on Web Form, and give the name ‘timetable’.

Add a title and <h1> page heading. Give the identification name ‘content’ to the <div> division.

<head runat="server">

 <title>Bus Timetable</title>

</head>

<body>

 <form id="form1" runat="server">

 <div id="content">

 <h1>Wrexham - Barmouth Bus Service</h1>

 </div>

 </form>

 Chapter 4: Bus timetable 77

We will add basic formatting to the page using a style sheet. Go to the Solution Explorer window

and right click the busTimetable project icon. Select Add / New Item and choose Style Sheet. Accept

the name ‘StyleSheet1’.

 Add code to the syle sheet to set the width of the content area, centre this, and set the font style

and size for the heading.

body

{

 background: #E9E9E9;

 margin: 0px;

 padding: 0px;

 font-size: .80em;

}

#content

{

 width:1000px;

 background-color: White;

 margin-left: auto;

 margin-right: auto;

 font-family: Arial, Helvetica, sans-serif;

 color: Black;

}

h1

{

 text-align: center;

 font-size: large;

 font-weight:normal;

}

Return to the HTML page and add a line of code to the <head> section to link to the style sheet.

<head runat="server">

 <title>Bus Timetable</title>

 <link rel="Stylesheet" type="text/css" href="StyleSheet1.css" />

</head>

78 Web Applications with C#.ASP

Use Photoshop, Paintshop or a similar graphics application to create a route diagram for the bus

service. Save this as the file ‘route.png’ or ‘route.jpg’.

 Barmouth Dolgellau Bala Llangollen Wrexham

Use the Design button in the bottom left of the program window to go to the screen display. Check

that the heading ‘Wrexham – Barmouth Bus Service’ is correctly centred.

Right click the busTimetable project icon and select Add / Existing Item. Locate the route image and

upload this to the project.

Click after the ‘Wrexham – Barmouth Bus Service’ heading and press Enter to create a new

paragraph. Go to the Toolbox and scroll down to the HTML component section. Drag the Image

icon to the paragraph area. In the Properties window, find the source (Src) property and set this to

the name of the route image file.

Return to the HTML code window. If required, the image can be centred by adding ‘align = center’

to the paragraph tag, and the size of the image can be adjusted with a ‘width’ value.

 <div id="content">

 <h1>Wrexham - Barmouth Bus Service</h1>

 <p align="center">

 </p>

 </div>

 Chapter 4: Bus timetable 79

Build and run the web page. Check that the route map is displayed.

Close the web browser, stop debugging, and return to the Design view.

Go to the HTML section of the Toolbox and select the Table component. Drag and drop at the

right-hand end of the image, so that the table is inserted below.

Change to the HTML code page by clicking the Source button at the bottom left of the window.

The table will be used to display captions and drop down list boxes where the user can select their

departure point and destination. Only two rows of two cells will be needed in the table, so the

additional code can be deleted. Also remove the ‘width 100%’ value from the <table> tag.

 <div id="content">

 <h1>Wrexham - Barmouth Bus Service</h1>

 <p align="center">

 </p>

 <table>

 <tr>

 <td>

 </td>

 <td>

 </td>

 </tr>

 <tr>

 <td>

 </td>

 <td>

 </td>

 </tr>

 </table>

 </div>

80 Web Applications with C#.ASP

We will format the table. Open the style sheet and add entries for table and td.

h1

{

 text-align: center;

 font-size: large;

 font-weight:normal;

}

table

{

 margin-left: auto;

 margin-right: auto;

 border: none;

}

table td

{

 padding: 10px;

}

Return to the Design view of the timetable.aspx page. Type the captions ‘From’ and ‘To’ into the

first column of the table. Locate the DropDownList component in the Toolbox, and drag this to the

second column of the table alongside the ‘From’ caption. Click the small arrow to the right of the

DropDownList, and select Edit Items.

Click the Add button

and enter the value

‘Barmouth’.

Click Add again, and

enter ‘Dolgellau’.

Continue for the

remaining towns, then

click OK to save the list.

 Chapter 4: Bus timetable 81

Click the Source button to return to the HTML code. You will see that the computer has inserted the
DropDownList items. Set the ID name of the list to ‘listFrom’.

 <table>
 <tr>
 <td>
 From</td>

 <td>

 <asp:DropDownList ID="listFrom" runat="server">

 <asp:ListItem Value="Barmouth"></asp:ListItem>

 <asp:ListItem Value="Dolgellau"></asp:ListItem>

 <asp:ListItem Value="Bala"></asp:ListItem>

 <asp:ListItem Value="Llangollen"></asp:ListItem>

 <asp:ListItem Value="Wrexham"></asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

Copy and paste the DropDownList code to the second row of the table. Set the ID name of the
second list to ‘listTo’.

 <table>

 <tr>

 <td>

 From</td>

 <td>

 <asp:DropDownList ID="listFrom" runat="server">

 <asp:ListItem Value="Barmouth"></asp:ListItem>

 <asp:ListItem Value="Dolgellau"></asp:ListItem>

 <asp:ListItem Value="Bala"></asp:ListItem>

 <asp:ListItem Value="Llangollen"></asp:ListItem>

 <asp:ListItem Value="Wrexham"></asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 <tr>

 <td>

 To</td>

 <td>

 <asp:DropDownList ID="listTo" runat="server">

 <asp:ListItem Value="Barmouth"></asp:ListItem>

 <asp:ListItem Value="Dolgellau"></asp:ListItem>

 <asp:ListItem Value="Bala"></asp:ListItem>

 <asp:ListItem Value="Llangollen"></asp:ListItem>

 <asp:ListItem Value="Wrexham"></asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 </table>

copy

82 Web Applications with C#.ASP

Build and run the web page. Check that the drop down lists show the set of town names correctly.

Return to the HTML page, stop debugging, and add code to produce two RadioButtons. These will

allow the user to select either a departure time or arrival time for their journey enquiry. Notice that

the two radio buttons are give the same GroupName; this ensures that only one of the buttons can

be selected at a time.

 <asp:ListItem Value="Wrexham"></asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 </table>

 <center>

 <asp:RadioButton ID="rbtnAfter" runat="server" Text="depart after"

 Checked="True" GroupName="journeyType" />

 <asp:RadioButton ID="rbtnBefore" runat="server" Text="arrive before"

 GroupName="journeyType" />

 </center>

 </div>

We will now add the input boxes for the required departure or arrival time. Create a table with one

row and four columns. Enter the caption ‘hours’ in the first column, and ‘minutes’ in the third

column.

 <asp:RadioButton ID="rbtnBefore" runat="server" Text="arrive before"

 GroupName="journeyType" />

 </center>

 <table>

 <tr>

 <td>Hours</td>

 <td></td>

 <td>Minutes</td>

 <td></td>

 </tr>

 </table>

 Chapter 4: Bus timetable 83

Change to the page layout view by clicking the Design button. Select the DropDownList component

and drag this to each of the two empty cells of the table.

Click the Source button to view the HTML code and give the ID names ‘listHour’ and ‘listMins’ to the

drop down list boxes. Add hour and minute values for the drop down lists. You can save time by

using copy and paste to add the items, then edit the numbers as required.

 <table>

 <tr>

 <td>Hours</td>

 <td>

 <asp:DropDownList ID="listHour" runat="server">

 <asp:ListItem>00</asp:ListItem>

 <asp:ListItem>01</asp:ListItem>

 <asp:ListItem>02</asp:ListItem>

 <asp:ListItem>03</asp:ListItem>

 <asp:ListItem>04</asp:ListItem>

 <asp:ListItem>05</asp:ListItem>

 <asp:ListItem>06</asp:ListItem>

 <asp:ListItem>19</asp:ListItem>

 <asp:ListItem>20</asp:ListItem>

 <asp:ListItem>21</asp:ListItem>

 <asp:ListItem>22</asp:ListItem>

 <asp:ListItem>23</asp:ListItem>

 </asp:DropDownList>

 </td>

 <td>

 Minutes </td>

 <td>

 <asp:DropDownList ID="listMins" runat="server">

 <asp:ListItem>00</asp:ListItem>

 <asp:ListItem>15</asp:ListItem>

 <asp:ListItem>30</asp:ListItem>

 <asp:ListItem>45</asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 </table>

Build and run the web page to check that the drop down lists operate correctly.

continue copying for

each hour: 07 to 18

84 Web Applications with C#.ASP

Return to the HTML page and stop debugging. Add a button which will call a method to find the

most suitable bus time.

 <asp:ListItem>30</asp:ListItem>

 <asp:ListItem>45</asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 </table>

 <center>

 <asp:Button ID="btnGetTime" runat="server" Text="Find bus time" />

 </center>

 </div>

Use the Design button to select the page layout view. Press the Enter key after the button to move

down the page, then add a Label component from the toolbox. In the Properties window, delete the

text from the label and change its name to ‘lblOutput’. We will use this label as a place holder

where the program can output the bus time for the user.

Double click the ‘Find bus time’ button to create a C# button_click() method.

We will add lines to the method to create a string of HTML code which will display information on

the web page. Begin by setting up an empty string s. We can add commands to this string by means

of the ‘+=’ operator. Once the set of HTML commands is complete, this is transferred to the Label

Text property.

protected void btnGetTime_Click(object sender, EventArgs e)

 {

 string s = "";

 s += "<table border=1 cellpadding=10><tr><td>";

 s += "Travelling from: ";

 s += Convert.ToString(listFrom.SelectedItem);

 s += "
";

 s += "Travelling to: ";

 s += Convert.ToString(listTo.SelectedItem);

 s += "</table>";

 lblOutput.Text = s;

 }

 Chapter 4: Bus timetable 85

Build and run the web page. Select a departure and destination town, then click the ‘Find bus time’

button.

We have created an output table, which echoes the town names as a means of checking that the

program is working correctly so far.

Return to the C# code page and stop debugging.

At this stage we can examine the departure and destination points selected by the user:

 If both locations are the same, then the user has made an invalid journey request.

 If valid departure and destination points have been entered, then we need to check

whether the journey is in an eastwards or westwards direction, so that the correct bus

timetable can be selected.

Add code to the button_click() method.

 s += "Travelling to: ";

 s += Convert.ToString(listTo.SelectedItem);

 int fromIndex = Convert.ToInt16(listFrom.SelectedIndex);

 int toIndex = Convert.ToInt16(listTo.SelectedIndex);

 if (fromIndex == toIndex)

 {

 s += "
Different start and finish locations must be selected";

 }

 s += "</table>";

 lblOutput.Text = s;

 }

This determines the positions of the selected towns in the drop down lists. If both the departure

and destination town have the same list index value, then the user has selected the same departure

and destination town and an error message needs to be displayed.

86 Web Applications with C#.ASP

Build and run the web page. Select the same town as the departure and destination point, and

check that the error message is displayed.

If valid departure and detination towns are selected, we now need to determine whether the

journey is eastwards (using the Barmouth to Wrexham timetable) or westwards (using the Wrexham

to Barmouth timetable). We can check this by comparing the drop down list index values for the

departure and arrival towns. The drop down list index has numbered the towns from west to east,

so Barmouth = 0 and Wrexham = 4. The departure point will have a lower index value than the

arrival point for an eastwards journey, but a higher index value than the arrival point for a

westwards journey.

Return to the C# code page and stop debugging. Add lines to check the journey direction.

 int fromIndex = Convert.ToInt16(listFrom.SelectedIndex);

 int toIndex = Convert.ToInt16(listTo.SelectedIndex);

 if (fromIndex == toIndex)

 {

 s += "
Different start and finish locations must be selected";

 }

 else

 {

 string direction = "";

 if (fromIndex < toIndex)

 {

 direction = "east";

 }

 else

 {

 direction = "west";

 }

 s+="
Travel direction: " + direction;

 }

 s += "</table>";

 lblOutput.Text = s;

 Chapter 4: Bus timetable 87

Build and run the web page. Select both eastward and westward journeys, and check that the

correct travel direction is displayed in each case.

Return to the C# code page. We can now load the correct bus timetable from the database,

depending on the journey direction.

Begin by adding ‘using Data’ and ‘using SqlClient’ directives at the top of the page. Also add the

location of the database.

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Data;

using System.Data.SqlClient;

namespace busTimetable

{

 public partial class timetable : System.Web.UI.Page

 {

 string databaseLocation = "C:\\C#\\BusTimetables.mdf;";

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void btnGetTime_Click(object sender, EventArgs e)

 {

 string s = "";

88 Web Applications with C#.ASP

Move down the C# page to the line which outputs the travel direction. Insert code after this line

which will open the database and load the required timetable data. A message will also be displayed

on the web page to say which timetable is being used. Note: the section of code:
 SqlConnection cnTB = new SqlConnection(.. ..);

should be entered without any line breaks.

 direction = "west";

 }

 s+="
Travel direction: " + direction;

 DataSet dsBus = new DataSet();

 SqlConnection cnTB = new SqlConnection(@"Data Source=.\SQLEXPRESS;

 AttachDbFilename="+databaseLocation + "Integrated Security=True;

 Connect Timeout=30; User Instance=True");

 cnTB.Open();

 SqlCommand cmBus = new SqlCommand();

 cmBus.Connection = cnTB;

 cmBus.CommandType = CommandType.Text;

 if (direction == "west")

 {

 cmBus.CommandText = "SELECT * FROM WrexhamBarmouth";

 s += "<h1>Wrexham to Barmouth service</h1>";

 }

 else

 {

 cmBus.CommandText = "SELECT * FROM BarmouthWrexham";

 s += "<h1>Barmouth to Wrexham service</h1>";

 }

 SqlDataAdapter daBus = new SqlDataAdapter(cmBus);

 daBus.Fill(dsBus);

 cnTB.Close();

 }

Build and run the web page. Check that the correct bus service is selected for the journey direction.

 Chapter 4: Bus timetable 89

Return to the C# page and stop debugging. We now add code to obtain the time in hours and

minutes entered by the user, and whether this represents the required departure or arrival time.

 SqlDataAdapter daBus = new SqlDataAdapter(cmBus);

 daBus.Fill(dsBus);

 cnTB.Close();

 string hour = Convert.ToString(listHour.SelectedItem);

 string minutes = Convert.ToString(listMins.SelectedItem);

 string journeytype;

 if (rbtnBefore.Checked == true)

 {

 journeytype = "before";

 s += "Arrive before " + hour + ":" + minutes;

 }

 else

 {

 journeytype = "after";

 s += "Depart after " + hour+":"+minutes;

 }

 }

 s += "</table>";

 lblOutput.Text = s;

Build and run the web page to check that the required time is displayed.

90 Web Applications with C#.ASP

Return to the C# page and stop debugging. We can now find the most suitable bus departure time.

We begin with some preliminary lines of code:

 countRecords will tell us the number of journeys listed in the bus timetable.

 found will be set to true when a suitable bus time has been found which meets the user’s

requirements.

 busTimeWanted is a number version of the time entered by the user, for example: 09:30

becomes 930, 14:00 becomes 1400.

 The bus timetable for westwards journeys has columns showing the towns from Wrexham to

Barmouth, which is the opposite order to the drop down lists on the web page. It is

therefore necessary to reverse the index values in the case of westward journeys, so that the

order of the towns matches the order of the columns in the database table.

 else

 {

 journeytype = "after";

 s += "Depart after " + hour+":"+minutes;

 }

 int countRecords = dsBus.Tables[0].Rows.Count;

 Boolean found;

 int busTimeWanted = Convert.ToInt16(hour + minutes);

 if (direction == "west")

 {

 toIndex = 4 - toIndex;

 fromIndex = 4 - fromIndex;

 }

 }

 s += "</table>";

 lblOutput.Text = s;

We now add a block of code which will operate only if the user specifies a time after which they

wish to depart. We begin by setting the found variable to ‘false’, as a suitable journey time has not

yet been identified. The program then carries out a loop in which each journey record from the

timetable will be examined in the search for a suitable bus time.

 toIndex = 4 - toIndex;

 fromIndex = 4 - fromIndex;

 }

 if (journeytype == "after")

 {

 found = false;

 for (int i = 0; i < countRecords; i++)

 {

 DataRow drBus = dsBus.Tables[0].Rows[i];

 }

 }

 }

 s += "</table>";

 Chapter 4: Bus timetable 91

The code to check for the most suitable bus time can now be added.

This begins by accessing the current bus journey record and selecting the bus times at the departure

point and the destination. These are stored as the string variables BusDepartTime and

BusArriveTime. Since the user has specified a time after which they wish to depart, the value of

BusDepartTime is the important piece of data.

We convert BusDepartTime into number format, so that it can be compared with the required

departure time, BusTimeWanted.

As soon as a bus departing on or after the required time is identified, the found variable is set to

true. This ensures that no later bus times are considered.

The bus departure and arrival times are added to the output string and will be displayed.

In the event of no buses departing on or after the time specified by the user, the found variable will

still be set to false when all records have been checked. In this case, an information message will be

displayed.

 if (journeytype == "after")

 {

 found = false;

 for (int i = 0; i < countRecords; i++)

 {

 DataRow drBus = dsBus.Tables[0].Rows[i];

 string BusDepartTime = Convert.ToString(drBus[fromIndex]);

 string BusArriveTime = Convert.ToString(drBus[toIndex]);

 int busTimeFound = Convert.ToInt16(BusDepartTime);

 if (busTimeFound >= busTimeWanted && found == false)

 {

 found = true;

 s += "<h1>Depart ";

 s += Convert.ToString(listFrom.SelectedItem);

 s += ": " + BusDepartTime + "
";

 s += "Arrive ";

 s += Convert.ToString(listTo.SelectedItem);

 s += ": " + BusArriveTime + "</h2>";

 }

 }

 if (found == false)

 {

 s += "<h1>No service available at this time</h1>";

 }

 }

Build and run the web page. Test the program for a series of journeys, both in an eastwards and

westwards direction. In each case select a time after which to depart. Use the timetables on

page 72 to check that the program output is correct. Also test the case of a departure time which is

too late to catch the last bus.

92 Web Applications with C#.ASP

We can now return to the C# page, stop debugging, and add a similar block of code to handle the

case where the user specifies a time by which they wish to arrive at their destination.

 s += "<h1>No service available at this time</h1>";

 }

 }

 else

 {

 found = false;

 for (int i = countRecords-1; i>=0 ; i--)

 {

 DataRow drBus = dsBus.Tables[0].Rows[i];

 string BusDepartTime = Convert.ToString(drBus[fromIndex]);

 string BusArriveTime = Convert.ToString(drBus[toIndex]);

 int busTimeFound = Convert.ToInt16(BusArriveTime);

 if (busTimeFound <= busTimeWanted && found == false)

 {

 found = true;

 s += "<h1>Depart ";

 s += Convert.ToString(listFrom.SelectedItem);

 s += ": " + BusDepartTime + "
";

 s += "Arrive ";

 s += Convert.ToString(listTo.SelectedItem);

 s += ": " + BusArriveTime + "</h2>";

 }

 }

 if (found == false)

 {

 s += "No service available at this time
";

 }

 }

 }

 s += "</table>";

 Chapter 4: Bus timetable 93

Notice that in this case the important piece of data is the arrival time of the bus, and this is

compared to the time specified by the user. We have to modify the loop command:

for (int i = countRecords-1; i>=0 ; i--)

so that the records are searched in reverse order, beginning with the last bus of the day. This

ensures that the user is offered only the latest departure which will get them to their destination on

time.

Build and test the completed program. Check the arrival times against the bus timetables give on

page 72.

